

The HTR/VHTR Project in Framatome ANP

Dominique HITTNER

HTR-VHTR Project R&D manager
Framatome ANP

The reference concept of ANTARES programme: a flexible heat source for heat supply, electricity production or cogeneration

Base options of the Framatome ANP design

ANTARES

Indirect combined cycle

- Same efficiency as direct cycle (~ 48%)
- Minimises the development risks (vessel (t° + pressure) + turbo-machine)
- Simplifies the turbomachine maintenance
- Focuses the innovation effort on the IHX, which anyway has to be developed for heat applications
- Flexibility for testing different types of applications (e.g. supercritical CO₂ cycle,heat applications, including H₂ production, etc) due to the decoupling with the reactor
- Plate IHX (back-up tubular)
 - Compactness and efficiency, but a real development challenge; FANP is at the same time investigating 3 different designs

Arrangement for Electricity and Hydrogen Cogeneration

The reactor

ANTARES

- TRISO fuel
- Prismatic fuel elements
- Annular core
- to make the largest use of inherent safety features
 - fuel leaktightness,
 - thermal inertia,
 - strongly negative temperature coefficient
 - Passive heat removal

Performance objectives

- ► Power: as high as compatible with inherent safety features, likely in the range of 600 MWth,
- Reactor outlet temperature: as high as reasonably possible for a near term deployment, likely to be at least 850 °C,
- Costs: as low as possible (construction, operation and maintenance, dismantling),
- Burn-up: optimised for making the fuel cycle cost effective while keeping compatibility with inherent safety features (most likely not exceeding ~ 150 GWd/tHM),
- to meet the licensing criteria in US, Europe and if possible worldwide, thanks to an effort of internationalisation of the safety assessment principles

Framatome ANP Project integrating work

Internal FANP Activities

- ■Reactor Engineering
- Fuel Plant Engineering
- ■Safety Approach
- R&D
 - Calculation Tools & Methods
 - Fuel Design & manufacturing
 - Materials Vessel, IHX...
 - Components IHX, Ducts, Valves
 - Helium Technology

Past Experience in Germany (FANP,

■ AVR, THTR

- Jülich...)
- PNP, HTR-Modul Projects
- KVK Test Facility

CEA R&D support programme

- Calculation Tools & Methods
- Fuel Technology
- Materials
- Helium Technology
- Test Facilities

EC Contracts

- FP5:
 - √ reactor physics,
 - ✓ Fuel technology
 - ✓ materials,
 - ✓ components
 - √ safety approach
- FP6: one large integrated project

Technology Supply

- HTR-10 China
- PBMR South Africa

EDF Collaboration

- PCS Optimization
- HTE Process
- O&M

DOE/Minatom GT-MHR Programme

Support of Conceptual Design

V/HTR Project Organization

The R&D support programme

A AREVA

The R&D programme (1/2)

- Development and qualification of computer tools
 - Core physics (coupled neutronic and thermo-fluid dynamics tools)
 - Fuel performance
 - Transient analysis
 - Graphite oxidation
 - Seismic analysis of a block stack
- Fuel technology (fabrication and behaviour in operating and accident conditions)
- Material development
 - Vessel material
 - High temperature metallic materials
 - Graphite
 - Composites

- Characterisation
- Behaviour under irradiation
- Oxidation

The R&D programme (2/2)

- Helium technologies
 - Purification
 - Interaction with He impurities
 - Tribology
- Component development
 - HX
 - Circulator
- **→Need to develop test facilities**
 - Irradiation facilities (in OSIRIS, HFR)
 - Oxidation facilities (CEA, FZJ)
 - Helium test benches
 - Dedicated test facilities (impure He chemistry, He leak tightness of seals, insulation performance, purification, tribometer....)
 - Large integral test facility: HELITE loop developed in Cadarache, starting in 2007

•

Fuel fabrication

CEA Cadarache

CEA Grenoble

ZrCl₄ equipment for ZrC coating

Vertically GSP device

Chloride maker Gas dilution controller

UO₂ kernels

TRISO Buffer/IPyC/SiC/OPyC layers

ZrC coating first tests

GAIA facility under construction in CEA Cadarache
+ Compacting facility from CERCA

1st UO₂ TRISO fuel re-fabricated in Europe in 2005

1st irradiation in OSIRIS in 2007

A few facilities in CEA Cadarache

COMETHE Facility

Helium Tribometer

HELITE technological loop – 1 MW

Framatome ANP has initiated a 3 Year IHX **Development Program**

Module

Valves

reheater

Framatome/HEATRIC **IHX Test Module**

Framatome ANP Test Loop with Framatome/HEATRIC **Element**

Behaviour of high temperature materials in He environment: the Framatome-ANP loop

Vessel material: Mod. 9Cr1Mo development

- ▶ Behaviour under irradiation: PIE of HFR irradiation just finished ⇒ no significant impact of irradiation on base material and thick weldment
- Welding development (FANP)

Varestraint Tests (CEA)

An overview of the Framatome ANP + CEA + EdF HTR/VHTR programme

- Total 2004 HTR-VHTR budget (FANP + CEA + EdF) ~ 32 M€/y
- ► Total 2004 R&D effort (FANP + CEA + EdF) ~ 20 M€/y
- ► Total 2004 Framatome ANP budget ~ 20 M€/y
- ⇒Framatome ANP is committed to develop HTR/VHTR till industrial deployment and is leading the programme performed with its partners
- But the FANP/CEA/EdF partnership cannot do it alone!
- + Importance of the R&D in the present phase
- Need of international cooperation (Europe, GEN IV...)

O^ER¹/₃Nº¹/₃^NL¹Nº⁵/8 "○■